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Even the First Iterate of a Markov Operator 
Is Contracting in an L2 Norm 

Sergey V. E r s h o v  ~ 

Received July 7. 1993 

A weighted L 2 norm is introduced in which Markov operators, e.g., associated 
with noisy maps, are contracting provided the kernel (i.e., the transitional 
distribution) is smooth enough. This results in strong relaxational properties 
of noisy maps. Similar to this norm, integral functionals appear useful when 
studying spatiotemporal chaos and random fields. 
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1. INTRODUCTION 

Recent years have brought  remarkable successes in understanding chaotic 
attractors. However, not  long ago it appeared that sometimes it is not  the 
equilibrium, but the transient regime which is of importance, cL~) Moreover,  
apart  from its own significance for describing transients (as to how the 
dynamical  system, once started, converges to the stationary regime), the 
understanding of relaxation is very important  for the perturbation theory, 
even that of  attractors. Indeed, the zeroth approximation usually treats a 
complex system as a group of  noninteracting subsystems. The higher ones 
"turn on" the (weak) interactions, so the subsystems are not exactly on 
their attractors. The deviation from the zeroth approximation appears as 
a balance between the interactions, pulling the subsystems from their 
attractors, and their relaxations toward them. (3 5) 

In this paper we will investigate relaxation toward the statistical 
equilibrium in the noisy map 

x . + l  = f ( x . ) + ~ .  (1.I) 
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where ~ is a r andom noise with distribution w((). This system originates a 
Markov  chain, and the distribution at the nth iteration p , ( x )  obeys t6"7~ 

p . +  l(x) = (~f,,,, p . ) (x )  - f w(x - f ( y ) )  p . ( y )  dy (1.2) 

If the external noise vanishes, i.e., its distribution becomes a 6-function, the 
master  equat ion (1.2) takes the form 

p .  + ,(x) = ( ~ p , , ) ( x )  =- f 6(x - f ( y ) )  p . ( y )  dy (1.3) 

and is called the F roben ius -Per ron  equat ionJ  8) 
The relaxation toward the statistical equilibrium means a convergence 

to the invariant distribution P(x):  p,, " 4 %  .p. This convergence was exten- 
sively studied, and the well-known ergodic theorems were proved which 
state that  (under not too strong limitations) the iterates of two different 
initial distributions/~o and Po converge asymptotical ly exponentially: 

A ~ fll~PollL, for any n 
P ,  L, )x".ll,dpollL, for n>~no 

where LJpn = ,6, - p , ,  x = const < l J  7J In other words, the iterates of the 
master  opera tor  ~y.,,, are asymptotically contracting: 

1 x for any n (1.4) 
I I~ . , , I IL ,~  , for n>_.n o 

A relation similar to (1.4) was also proved for a F roben ius -Pe r ron  
opera tor  s (i.e., for the noiseless case), 19'l~ though this required strong 
limitations on f (e.g., in the one-dimensional  case it should be piecewise dif- 
ferentiable with ] f ' ]  > 2, etc.). Unfortunately,  now n o depends on Apo, and 
goes to infinity when Apo becomes singular)  3~ I ment ion also an interesting 
investigation of the spectral characteristics of -~f for some simple maps  f 
done in ref. 11. 

The convergence (1.4) requires that Ap(x)  be, in a sense, "equi- 
distributed" over parts of supp P; otherwise the sequence Ap,  will be 
asymptotical ly periodic (see Ref. 7). Say, let supp P be a union of two inter- 
vals 11 and 12; and denote P~k~(x)=P(x).xzk(x) ,  where XA(x) is the 
indicator of the set A, i.e., 1 for x ~ A and 0 otherwise. Obviously,  the 
Markov  chain permutes these p~k): 5fy.,,,pc~)= p(2), .~:,,,p~Z)= p(l), thus for 
3p ~ = p~l) _ p~2) (notice that  S Apo dx = 0) we have s Apo = p~Z) _ p~)  = 
- , JPo ,  etc., and the sequence 3 p , ( x )  = ( - 1 )" Apo(x ) is not  converging but 
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2-periodic. Considering the second iterate .L~a~.w one easily finds that 
convergence is recovered if, and only if, ~lk zipo(x)dx = 0. The same holds 
when the attractor consists of a greater number of intervals. 

Frequently the asymptotic estimate (1.4) is sufficient, t2-5~ but some- 
times it is crucial that already the first iterate of the master operator itself 
be contracting. In the L~ norm this is impossible; one easily finds that for 
dpo consisting of narrow peaks only II-~z,., ziPo[I L, = IIzip011L,- In this paper 
we will prove that in the weighted L2 norm 

IIzipll z ~ f gziP(X)-l------~z dx (1.5) 
P(x) 

where P(x) is the invariant distribution, even the first iterate of the Markov 
operator (1.2) is contracting: IILez,.ll~<~c<l I-for those zip for which 
the integral (1.5) exists and ~l, zipdx=O, where Ik is any interval from 
those composing supp P =  U~=~ Ii]. Our proof requires that the map 
x ,+~=f(x , )  possess a bounded attractor, and the distribution of the noise 
w(. ) has (bounded) derivatives up to the fourth. The latter condition seems 
superfluous for an integral operator and apparently results from this way 
of proof. 

In conclusion we discuss the significance of L2 norms closely related 
with (1.5) for spatiotemporal chaos and random fields. 

2. T H E  G E N E R A L  E S T I M A T E S  

Let us show that the Markov operator with a bounded kernel is not 
expanding in the norm (1.5). The Markov operator is a linear integral 
operator 

(Kp)(x) - f k(x, y) p(y) dy (2.1) 

whose kernel k(-, -) is generally the transitional probability and so satisfies 
k >~O, S k(x, y )dy= l. 

Here and below the (2.1)-type operator will be denoted by the same 
letter as its kernel, only in upper case. 

Now take some p(x)>~O and an arbitrary dp(x) for which 
{ [Ap(x)]2/p(x)} dx exists. This obviously implies that supp z ip_  supp p; 

outside, where this fraction is undefined, we put [Ap]2/p =-0, so here and 
below 

[Ap] z 
supp _~supp p (2.2) 

P 
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Then 

f [AP(Y)]~2 k(x, y) dy 
P(Y) 

exists and by the Cauchy-Bunjakowsky inequality 

((K,6p)(x))2 =(f  P-~'dP(Y) k(x, y)p(y)dy) 2 

<~I k(x, y) p(y)dy.f \ p - ~ j  k(x, y) p(y)dy 

= (Kp)(x) f [zlp(y)]~ k(x, y) dy 
P(Y) 

s o  

(Kp)(x) p(y) p / 

which after integration gives 

f((Kdp)(x)) 2 [Ap(y)] 2 dx<~(j p(y) dy (2.4) 

Notice that, comparing (2.3) with (2.1) and recalling that supp([Ap]2/p)~_ 
supp p, we easily conclude that 

[ r  ~p] 2 
~_ supp Kp (2.5) supp Kp 

All this obviously holds for the operator ~:.w of (1.2), so taking for p(x) its 
invariant distribution P =  ~:.wP and using the norm (1.5), we get 

ll~:,., dpll ~ Ildpll 
o r  

II~:,wll ~ 1 

Notice that these estimates are also valid for the Frobenius-Perron 
operator (1.3), though its kernel 6(x-f(y)) is singular. Indeed, the 
existence of ~ {[ap(x)]~/p(x)} dx implies that [Ap(x)]2/p(x)is bounded 
for almost all x, thus 

I lAP(Y)]2 6(x--f (y)) dy 
P(Y) 
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which is in fact a sum over the preimages f -~ (x ) ,  exists for almost all x. 
Therefore, 

f ((~fAp)(x))Z" _ [ziP(Y)] 2 
-'~f-'~'~ a x ~ f  P ( Y ) d y  (2.6) 

Unfortunately, ~ is not contracting even in the norm (1.5), and one can 
easily construct p and Ap for which (2.6) is an equality. 

Comparing (1.2) with (1.3), one finds that ~:,,, is a composition: 
.L#:,,, = W ~ ,  where 

(Wp)(x) = f w(x - y) p(y) dy (2.7) 

and since ~ satisfies (2.4), it suffices to prove that 

f ((w'aP)(x))2 . <f [aP(X)]2ax 
- ( ~  ax p(x) 

to show that ~:.,, is contracting in the norm (1.5). This is the main content 
of this paper. For the sake of simplicity we will consider the one- 
dimensional case; the multidimensional generalization is straightforward 
and consists mainly of technicalities, such as matrices of derivatives, etc. 

3. T H E  IDEA OF THE P R O O F  

The idea of the proof.comes from the properties of the (2.7)-like 
convolution operator Q, whose kernel q~(.) is a narrow peak. Throughout 
the paper we will use 

{U2~ if 1~1~<~ 
q,(~) = (3.1) 

otherwise 

Let us introduce the relative deviation u =-Ap/p and assume that in some 
domain D' it is smooth. Then, we write 

(Q, Ap)(x)=-~ Ap(y)q,(x-  y ) d y = f  u(x +~)q,(r p(x+~)d~ (3.2) 

where, owing to (3.1), the integration goes over Ill ~<E. When xED' we 
expand u(x+ ~) and p(x+ ~) in the Taylor series 

u(x + ~) = u(x) + ~u'(x) + ~2u"(x)/2 + O(e 3) 

p(x + r = p(x) + ~p'(x) + O(e 2) 
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and substituting these expansions in (3.2), we easily get 
~2 

(Q, Ap)(x) = u(x)(O, p)(x) + -~ (u"(x) p(x) + 2u'(x) p'(x)) + O(e3), x ~ O' 

(3.3) 
Similarly, 

f [ztP(Y)]2 p(y~---~ q~(x -- y) dy 

= f u2(x + r q,(~) p(x + ~) de 

g2 
= u2(x)(O, p)(x) + --ff ((u2) " (x) p(x) + 2(u2) ' (x) p'(x)) 

+ O(e3), x~D'  

which together with (3.3) yields that for x~ D' 

((O, 3p)(x)) 2 = f [Ap(y)]2 e 2 (Q,p)(x) p(y) q , ( x -  y) dy - -~  p(x)(u'(x)) 2 + O(e 3) (3.4) 

Outside D', where the Taylor expansions fail, the estimate (2.3) still gives 

((Q~ zlp)(x)) z _< f lAP(Y)]2 
(Q~p)(x) "~ p(y) q , ( x -  y) dy 

Combining it with (3.4) and integrating, we have 

f ((Q~Ap)(x))2dx<<.f[Ap(y)]2dy-~fo,  p(x)(u'(x))2dx+O(e3) (3.5) 
(O,p)(x) p(y) 

so for e small enough the operator Q~ is indeed contracting. 
The forthcoming program is the following. First we build a bridge 

between the operator W of (2.7) and Q~ by proving that if the kernel w is 
smooth, then for any e small enough 

W= Q,H~ + O(e 3) (3.6) 

where H, is the (2.7)-type convolution operator with bounded nonnegative 
kernel h~. According to (2.4), it is not expanding, while Q, is, as suggested 
by (3.5), contracting. Hence for the product W~= Q~H, we have 

f ((W~Ap)(x))2dx<~f ['dP(Y)]2dy-O(eZ)+O(e3) (3.7) 
(W~p)(x) p(y) 
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so taking e small enough and recalling that W =  W, + O(e3), we conclude 
that W is contracting. 

Sections 4-5 contain proofs of these outlines. 

4. THE DECOMPOSITION (3.6) 

In terms of the kernels, (3.6) means that there exists O<~h~(x)< ov 
with S h, dx = 1 and such that 

w~(x)= I q . ( x -  y) h.(y) dy= f q.(r h~(x + ~) d r (4.1) 

which is the kernel of the product operator W~, is close to w(x): 

Iw - w~l ~ O(~ 3) 

If hc admits the Taylor expansion 

h,(x + r = h~(x) + ~h',(x) + ~2h~'(x)/2 + O(e ~) 

then substituting it in (4.1), one easily calculates that wc=h,+ 
1 2 h - ge ,,, +O(e3), so to obtain w,=w+O(e 3) it is natural to try h,=ht, ~ 
w-eZw"/6. Below we will check whether it is indeed the sought-for 
solution. 

Let us assume that w(x) has continuous derivatives up to the fourth: 

dTx . w(x) <~ ~//', ~ ~r n = 0 ..... 4 (4.2) 

and that supp w is a single interval [Xo, x l ]  on which w does not vanish 
(at the end of this section we will show how to eliminate this limitation). 

Consider w~~ 

wt~~ - f q~(x - y) h.~~ (y) dy 

~2 l" t" 

Expanding w(x+~) and w"(x+~) in the exact Taylor series with the 
Lagrange remaifiders 

w(x + ~) = w(x) + ~w'(x) + ~2w"(x)/2 + ~3w"(x + ~*[x, ~] )/6 

w"(x + ~)= w"(x) + Cw"(x + ~** Ix, ~]) 
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where r and ~** are intermediate points between 0 and ~, we get 

w~O,,x)=w(x)+ ~ ~3q~(~, w "(x+  ~ * ) d ~ - ~  f ~q,(~, w " ( x +  ~**)d~ 

and according to (4.2), 

-< ~r162 ~2 
[w~~ 1r q,(~) d~ + e2f Ill q,(r de = sJ~// (4.3) 

16 

Then, since w(x) is smooth and its support bounded, ~ w" dx vanishes and 
so ~ hi, ~ dx= ~ w dx. As w is the distribution of noise, ~ w dx= 1 and thus 

h~ ~ dx = 1. Therefore, hi, ~ would be just what we need unless this hr176 
may turn negative [near  the boundaries of supp w, where w ~< O(42)-], thus 
making HI, ~ not Markovian.  This may occur only for those x where 

w(x) ~< e2~Y'z/6 ~< e2V//'/12 (4.4) 

In fact, the "dangerous" interval is even narrower. Indeed, consider the 
behavior of hr176 near the "dangerous" endpoints of supp w, i.e., Xo 
and x~. Assume that near these ends x ,  w(x) behaves like a power-law 
function, 

w(x) = a,. ( x -  x3*' + o ( ( x -  x3*') 
(4.5) 

w"(x) = ai. k , ( k i -  1 ) ( x -  xi) k'- 2 + o( ( x -  xi) k'- 2) 

where, according to the smoothness condition (4.2), k;~> 4. Since according 
to (4.4) the "dangerous" domain shrinks for e ~ 0 ,  we may use the 
asymptotic (4.5), which gives 

h~Ol(x) = a i ( x  _ x i ) l c , -  2 [ ( x  - -  X i )  2 - -  k i ( k  i - -  1 ) e 2 ] 

+ o((x - xi) k'- 2 [ (x  -- xi) 2 + e 2 ] ) (4.6) 

from which it follows that in fact ht, ~ turns negative for (and only for) those 
x where 

I x - -  Xi[ ~ e [ k i ( k  i - 1 )] 1/2 + o(e) 

and for h, to be nonnegative it has to differ from ht, ~ in this narrow 
domain. Since according to (4.6) in this domain Ih~~ ~<O(ek), where 
k - m i n  k~, the necessary modification is only slight, o ( e k ) .  This enables us 
to define h, as follows. First we introduce ht, l~ as (see Fig. 1): 

I. In [Xo+2e{ko(k o -  1)} u2, x ~ - 2 e { k d k ~ -  l)} u2] 

ht, ' ~(x) = h~,~ - w ( x ) -  e2w"(x)/6 

2. Outside [Xo+e,  x , - e ] ,  ht, lJ(x)-O. 
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0 
-d 

/ \ 

x o Xo+e Xo* 2 ~ k - ~  xl-2eck']l" ~ xl-e x I 

Fig. 1. A qualitative sketch of w(x) (dashed line), hl,~ (solid line), and hl~t)(x) (bold line). 

3. In the remaining domain, i.e., for [x0+e,  Xo+2e{ko(k o -  1)} 1/2] 
and [ x l - 2 e { k l ( k l -  1)} 1/2, x l - e l ,  h~l)(x)is an arbitrary inter- 
polation between h~ ~ and zero providing smooth (up to the 
second derivatives) conjugation and such that O<~ht~l<~O(ek), 
i(ht~)), I ~< O(ek_ a), i(h~,~),,[ ~< O(ek-2) in this domain. 

Then we define h~ as h~(x)-h~l)(x)/~ h~lldx (because for h, to originate a 
Markov operator it is necessary that ~ h, dx = 1 ). 

Now let us explain the second condition, which may seem strange. 
It means supph~_[Xo+e,  x t - e ] ,  and is to ensure that s u p p w,_  
[Xo, X l ] - s u p p  w, because the action of the convolution operator (4.1) 
expands the support by e in either side. And, since supp w~_~ supp w, we 
have 

supp W~p ~_ supp Wp (4.7) 

for any p >t o, which will be important later. 
One can easily see that for e small enough, h~ defined above is 

nonnegative and normalized: ~ h~ dx= 1. It is also smooth and bounded. 
Indeed, by construction, he, ~) is close to h~~ 

d" (h(O)_h~l)) _,,) 
-d-~x"" ~ <~ 0(~' <<" ~ ")' n = 0 ,  1,2 

so S h~ ') dx = ~ h~ ~ dx + O(e 4) = 1 + O(e4), and h~(x)= [1 + O(e4)] h~')(x), 
where the term O(e 4) is independent of x. Therefore h~ ~ and h~ are also 
close: 

d~. (hr ~ - h,) ~< O(e k - ' )  ~< O(e 4- ' ) ,  n = 0 ,  1,2 
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so estimating hr ~ w-e2w'/6 and its derivatives by means of (4.2), we 
conclude that for e small enough 

0~<h,~< ~V, Ih',l ~< ~r ,  Ih"l ~< ~r (4.8) 

where ~g- is the constant  from (4.2). Then, 

Iw~,~ w~(x)l = ~ [h t ,~  q~(x- y) dy 

~< O(e 4) ~ q~(r d~ = O(~ 4) 

which together with (4.3) gives Iw~-  wl ~< O(e3), so for e small enough 

Iw~- wl <~ Cle 3 (4.9) 

Here and below e is assumed to be small enough for (4.8)-(4.9) to be 
satisfied. 

The results also hold when supp w is not the single interval, but a 
union of a finite number  of  them: suffice it to expand w in a sum w = Z j  ws 
with supp ws= [Xto j~, x~J~]. Then for each w s we construct  corresponding 
h,.j as described above;  due to the linearity, h,=~,sh~j. Since their 
supports  do not overlap and each term satisfies (4.8), the sum h, also 
satisfies it. 

Finally, since w is smooth,  its support  is at any rate a union of inter- 
vals, though, perhaps,  of an infinite number  of them. In this case we split 
supp w into the union of a finite number  of intervals and the remainder  
so that  the Lebesgue measure of the latter (i.e., the total length of remain-  
ing intervals) is small: m(~)~< O(e). By construction, the boundaries  of ~R 
are also the boundaries  of supp w, and as w is smooth,  this means that  on 
them w =  w'= . . . .  w ci~=0.  Using the exact Taylor  expansion with the 
Lagrange remainder  and estimating w ~ in the intermediate point by (4.2), 
we see that w ~< 4,~4(m(.~))4/24 ~< O(e 4) on ~R. Now replace w with ~, coin- 
ciding with w(x) everywhere but on ~R, where rb = 0. Obviously supp a, is 
a union of a finite number  of intervals and I ~ - w l  ~< O(e4), which enables 
us to construct  h,, as described above, for ~ instead of w. We omit  the 
details. 

5. C O N T R A C T I O N  PROPERTIES OF THE O P E R A T O R  W 

In this section we elaborate the idea of (3.4)-(3.5), which together with 
the proximity of W to the product  opera tor  W~= Q~H~, enables us to 
prove that 

I (W•p)(x))2 -< dy, x = const < 1 
[ A p ( y ) ]  ~ 

(Wp)(x) J p(y) 
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for any distribution p(x) with a bounded support and deviation Ap(x) such 
that SAp dx = 0 for any interval from those composing supp p = U~=~ li 
and S {[Ap(x)]2/p(x)} dx exists. 

Let us first assume that this interval is unique (and with no zeros of 
p(x) inside, otherwise it should be treated as two adjacent intervals). 
Assume also that supp w is a unique interval too. Later, in the end of this 
section, we will eliminate these limitations. 

For convenience we denote Wp =_ t], W Ap =- At], and, correspondingly, 
W,p=-t]~, W~Ap=-At]~. Let also lS~=-H,p, AIS~=-H~Ap, so that p~=Q~t]~, 
At]~ = Q, At],. We begin with the obvious identity 

(~(x))" [(,~t](x))" (,~t]Ax)) ~] 
t](x) L ~ t]~(x) J 

+ [-(At]~(x))z [Ap(y)]Z w~(x -- y) dy] 
L f P(Y) 

+ f [~p(y)]2 [w~(x - y )  - w ( x -  y)] dy 
P(Y) 

+ f lAp(y)]2 w(x-  y)dy (5.1) 
P(Y) 

whose second term can be evaluated so that to "extract" the action of Q~. 
Indeed, by the general estimate (2.3), 

(AtS~(y)) 2 = ((H~ Ap)(y) ) 2 ~< f [ Ap(z) ].........~ z h~(y - z) dz 
~(y) - (H~p)(y) "~J p(z) 

SO, 

I (~P"()'))~ [~P(z)]~ ~(y) q , (x -y )  d y ~ f  p(z~-----~h,(y-z)q~(x-y)dydz 

- ~ r'~o(z)]--------~ w , Ix -  z) dz 
p( z )  

Substituting it in (5.1) and estimating w ~ - w  by means of (4.9), we get 

(at](x)) 2 [(at](x)) ~ (at].(x)) ~] 
t](x----)-<L t](x) ~ l 

L t]~(x) ~(y)) q~(x- y) dy 

-~-Cl~,3 f [Ap(y)]2~ dy+ j[ [AP(Y)]2w(x- (5.2) 
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where the second term is exactly what was estimated in (3.5). 
Now the idea is as follows. We split the domain D = supp/5 in two 

parts: Dff, where/5(x) t> d, and the remainder D~ = D\D~. It follows from 
(4.9) that 

f [w~(x--y)--w(x--y)] p(y) dy <~Cle 3 (5.3) I/5(x)-/5~(x)l = 

Hence/5~(x)/>/5(x) - C1 e3. Let here and below e ~< (d/2C~)1/3, then/5~(x) >/ 
/5(x)-d/2 and so inside D~', /5~ is also bounded from below: 

/5~(x) >_-/5(x)/2 >/d/2, x ~ D 2 (5.4) 

Thus we can use (5.2) in Dff, where the denominators in the first term are 
bounded from below and we expect that for e small enough this term is 
O(e3). Outside D~" the fractions of (5.2) may diverge, so instead of (5.2) we 
use the general estimate (2.3): 

(A/5(x)) 2 _  r [ziP(Y)] 2 
! w(x - y )  ely 

/5(x) J p ( y )  

which together with (5.2) leads after integration over D to 

fD (A/5(x))2/5(x-------)- dx<~ [1 +re(D)C,e 3 ] J" [Ap(y)]2p(y) dy 

(a/5(x)) ~ (a/5~(x)) ~ 
+ ; o :  /5(x) ~ - d ~  

+fo[(/I/5~(x))2 I (zt~6,(y))2 -I k /5,(x) ~ q~(x-y)dyJ dx (5.5) 

where m(D)=-Sodx is the Lebesgue measure. Since by (2.5) 
supp [z1/512//5_~ supp/5 = D, one can replace the integral So ( ' )  dx in the 
L.H.S. with S (") dx: 

j- (A/5(x))' �9 [ap(y) ]  2 - ~  ax<~[l+m(D) C, e3]J f p(y) dy 
+ ~o; I (~/5(x))~/5(x) (a/5:(x))~l 

+Io[(J/5~(x)) ~ f (a~(Y)) ~ L /5,(x) j6,(y) q,(x- y) dy] dx (5.6) 
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Due to (4.9) the second term is expected to be O(E3), while (3.7) suggests 
that the third one is -O(e2) .  So for e small enough it dominates and 

f (A~(x))~ dx<~f [ziP(Y)]2 d y -  O(e 2) 
~(x) p(y) 

which is what we need. 

5.1. Estimation of the Second Term of (5.6) 

To do this we use the identity 

(~p(x)): (~p,(x)) ~_ Ap(x)- Jp~(x) Ap(x) + Jp~(x) 
~(x) 6,(x) - (6,(x)) '/2 ({,,(x)) '/~ 

(3~(x)) 2 ~ ( x ) -  tJ(x) 
~(x) ~ ( x )  

The difference ~(x)-t~,(x) entering it was estimated in (5.3). Similarly, 

- A~(x) l  ~< C,E 3 f 1,4p(y)l dy I,~(x) 

and since by the Cauchy-Bunjakowsky inequality 

we have 

(5.7) 

/ (5.8) 

because p is a distribution and so S P dx = 1. As the kernels w, w,, and he 
satisfy ~ w dx = l, i w, clx = 1, S he dx = l, it readily follows that i / i  dx = l, 

15~ dx = l, ~/5~ clx = l, which we will use below without special remarks. 
Finally, the simple inequality (a + b):  ~ 2(a 2 + b 2) results in 

IdP(x) + ~P~(x)l ~< ,,/5. [(Ap(x)) 2 + (dp~(x)) 2]'/2 

so inside D~ ,  where according to (5.4),/5~(x) >~r we have 

(Ap~(x))2,] 1/2 ,~t~(x) + ~6,(x) ~-. (2 (~P(x))------~2 
4 4 2  + ) ' N Dff 

Substituting this inequality together with (5.3) and (5.8) in (5.7) and using 
the estimate (5.4), we find that for x ~ Dff 

822/74/3-4-22 
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] (zl~(x)) ~ (~J~<(x)) ~ 
~(x) ~(x) 

<~2C, g3{(1~ [dp̀ y,]2p(y) dy)\l/2 (2 (d/5'x))2 ~ + (d/5<(x))2"~ ' / 2 ~  ./ 

+ d ~(x) J 

thus 

~o:1 (~(x))~(x) (~<(x))~rax~(x) 
<~2Cle3{(d~[dp,y)]2 ,,2 (zl/5~(x))2.~ ,/2 p(y, dy) fo (2 (AP'X"2 " 

~--7-;7 + ~-777-7 / ex 
1 f (A ,D(x ) )  2 �9 ] 7J ~-~ axj, (5.9) 

Its first term can be estimated by the Cauchy-Bunjakowsky inequality as 

fo 
<~Em<D'So( 2̀A~(x,,2-~--~ + ~'~)) I'd~6~(x))2"~dx] '/2 

+ S �9 ~(x------S- ~<(x--3 ax] 

[as usual m(.) is the Lebesgue measure]. Then, according to (2.4), 

I (AP(x))----~2 dx <. I [ziP(Y)]2 dy, 
~(x) p(y) (aP~(x) )2 dx <~ f [~JP(Y)]2 

Pc(x) p(y) dy 

so finally (5.9) becomes 

j], (4P(x))~ (a~(x))~dx 
; ~(x) ~(x) 

F1 f3m(D)'~u2-I [dp(y)] 2 
~,~'La+t--~ -) If p(y) 

ay (5.1o) 
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Later we will need that d be small, so that D~" to comprise almost all D. 
So it is possible to assume (just for the sake of convenience) that d~< 1. In 
this case x / ~ < d  and (5.10) can be rewritten as 

(A/5(x)) 2 (AlSo(x)) 2 C2e 3 f [Ap(y)]2 
~o: - ~  ~ dx<~ d j p(y) dy (5.11) 

where C2=2C1{1 + [3m(D)]m}. Substituting this estimate in (5.6), we 
arrive at 

f(AtS(x))Zdx<<.( 1 C3e3"~ [Ap(y)] 2 
+TJf + 

[(Ale'(x))2 f (A/5~(Y))2 +Io;L ~ ~ q~(x-y) dy]dx (5.12) 

where C3 = C2 + m(D) C1. 
As ~ = Q o 6 , ,  AjO,=Q,A:~, the last term in this expression is 

associated with the action of the operator Q~ and will be estimated in the 
next subsection using the idea of (3.5). 

5.2. Estimation of the Last Item in (5.12) and 
Contract ion Properties of the  Opera to r  Q= 

To implement the idea of (3.5), we have to ascertain that u = L I~ /~  
is smooth enough to admit the Taylor expansion. 

By definition, 

~,(x) = h,(x-  y) p(y) dy 

a~(x) = & ( x -  y) Ap(y) dy 

F o r e  small enough (which we assume is satisfied) he has continuous 
derivatives up to the second, satisfying (4.8): 

d-~x,h~(x) ~< ~// ' ,  n = 0 ,  1,2 

from which it follows that ~,(x) and At~,(x) also have continuous 
derivatives up to the second. Indeed, 

-ff-~lS~(x) = ht,")(x - y) p(y) dy <~ "#/" P(Y) dy = "#/, n=0, 1,2 

(5.13) 
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and similarly [(d"/dx")A/SAx)[ ~<~r S Izlp(y)l dy, which by the Cauchy- 
Bunjakowsky inequality becomes [cf. (5.8)] 

ff.~n Zt lS ~ ( X ) ~ ,.ill..( f [ /I p ( y ) "] 2 "~1/2 p--~ ay) , n=O, 1,2 (5.14) 

Finally, let us show that ~,(x) does not vanish in the e-neighborhood of 
Dff, which together with (5.13)-(5.14) implies that in this domain 
u-= d ~ / ~ ,  is smooth enough. Indeed, by definition 

tS,(x)- f q~(x-  y) ~,(y) dy= ; q,(r ~,(x + ~) d~ 

Expanding ~,(x + ~) in the exact Taylor series with the Lagrange remainder 

/~,(x + ~) = ~,(x) + ~p'~(x) + ~2p"(x + r ~])/2 

we get IS ~q~(~)d~ = 0 owing to the symmetry of q,] 

~ ( x )  = ~ ( x )  + �89 r + r ~3) d~ 

and estimating ~ '  by means of (5.13), we arrive at I ~ ( x ) -  $,(x)l ~< e2~r 
which together with (5.3) gives 

I ~ ( x ) -  tS(x)l ~< e2r162 +e3C1 (5.15) 

Obviously, in the e-neighborhood of D j" 

p,(x)/> inf/~, - e -sup I~'~1 
o~ 

so using (5.13) and (5.15), one obtains 
e2~ r 1 

15~(x)>~d---~-e3Cl-e~l/ '=d-e~lt/ ' --6--~(e~F') 2 -  (e~//') 3 (5.16) 

Let here and below 

1 d 1 
e ~  (5.17) 

4 ~r l + 1/6~//" + CI/~V 3 

Then obviously etCF < 1 (it was assumed above that d~< 1) and one easily 
calculates that (5.15)-(5.16)imply 

I/5~(x) -- ~(x)[ ~< d/2 (5.18) 

t~(x)>~d/2, x e e-neighborhood of D~" (5.19) 
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Finally we notice that from (5.17) it follows that e3C~ <<,d/2, and so (5.17) 
includes the limitation e ~< (d/2C~) ~/3 used in the derivation of (5.4). 

Now the estimates (5.13), (5.14), and (5.19) imply that inside the 
z-neighborhood of D~, u(x) has continuous derivatives up to the second, 
and it is easy to calculate that 

~r ~ 2 r -11/2 
p(y) dyJ 

, ,~  2 , ~  3 1/2 ) +: 

Let here and below d~< 2~/r, which is just for the sake of convenience, since 
now the above inequalities can be written as 

l u ' ( x ) l<~2(~ )2 ( f  [Ap(y)]2 " "~''2] -ay) 
lu"(x ' l<~6(~)3( f [z lP(Y)]ZdY)m I , / ~ e-neighborhood of Dff 

P - ~  J .) (5.20) 

Now we can begin the estimation of the last term in (5.12), which is 

foff L 15,(x) ~,(y) q~(x- y)dy] dx (5.21) 

By definition, 

:,(x) - (Q~:~)(x) = ~ q~(~) :,(x + ~) d~ 

A:,(x) - (Q~ A:~)(x) = f q~(~) A:,(x + ~) dr 

= f u(x + ~) q,(~) :,(x + ~) dr 

and for x E D~', x + r lies in the e-neighborhood of D~', so u(x + r admits 
expansion in the exact Taylor series 

u(x+r162162 r (5.22) 

using which we get 

Ajr~(x) = u(x) tS~(x) + u'(x) f r162 ~6,(x + r de 

+ �89 f r162 u"(x+ r r ti~(x + r de 
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Squaring and dividing by ~(x), we obtain the first term from (5.21): 

(d~(x))2_[u(x)]2t3~(x) + [u,(x)]2 i f  ]2 #~(x) /5,(x--~ ~q~(4) ~ (x  + ~) d~ 

1 

+ 2u(x) u'(x) I ~q.(4) p~(x + ~) d~ 

+ u(x) f ~2q,(~) u"(x + ~*) tS,(x + ~) d4 

u'(x) I f  ~q,(~) fi,(x +~)dr ] 

x f 42q,(4) u"(x + 4*) p,(x + ~) d4 (5.23) 

The second term of the integrand from (5.21) is 

I (~p~(y))2 
~(y) q~(x-- y) dy =f  (u(x+ ~))2 q~(4) ~(x+ ~) d~ 

and substituting for u(x + ~) the expansion (5.22), one easily calculates that 

(,~(y))2 
~,(y) q~(x-y) dy=[u(x)]2#,(x)+(u'(x))2f~2q~(~)~(x+4)d4 

1 +-4 I [~2u"(x + ~*)]2 q~(~) P~(x + ~) d~ 

+ 2u(x) u'(x) f ~q,(~) tS~(x + ~) d~ 

+ u(x) f ~2q~(~) u"(x+ ~*) p~(x+ 4) d~ 

+ u'(x) f ~3q,(~) u"(x+ ~*) ~,(x+ ~) d~ (5.24) 

By the Cauchy-Bunjakowsky inequality, 

I f  ~2u"(x + ~*) q~(4) ~6~(x + ~) d~] 2 

<~ ~6~(x) f [~2u"(x + 4")3 2 q~(~) p~(x + ~) d~ 
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so comparing (5.23) with (5.24) and estimating the third term in (5.23) by 
the above inequality, we arrive at 

(Ap~(x))Z f (Ap~(y))2 
~6,(x) ~ q,(x-- y) dy 

<~ _ (u,(x))Z f r ~(x + ~) dr 

+ [u'(x)]---'~2 [ f ~ ( x )  ~q~(~)~6~(x + ~) d~] z 

+ ~q,(~):~(x+4)dr 4Zq~(~)u"(x+4*)~6,(x+4)dr 

f ~3q~(4) u"(x + r ~6,(x + 4) d4 UI(X) 

As already mentioned, when x ~ Dff, both x + 4 and x + 4" e Ix, x + 4-1 
belong to the e-neighborhood of D~', and so we can estimate u' and u" by 
means of (5.20), which gives 

(At~(x))2 f (Ap'(Y))2 
tS,(x) tS~(y) q,(x - y) dy 

<-..-(u'(x))2{~42q~(4)tS~(x+4)d~-~[f4q~(~)tS~(x+4)d4] 2} 

384~t/"5 

+ f [ 4 l  3 q,(4)~6~,x+ 4' d4}f[AP(Y)]2dy, x6Dff 
P(Y) 

Obviously, 

f 14l"q.(~)lS,(x+4)d4<"e"fq.(4)~6.(x+4)d4=~"lS"(x) 

Thus 

(AtS,(x)) 2 j" (AP.(Y)) 2 
p~(x) P~(Y) q~(x-- y) dy 

<-..-(u'(x))2Ifr ] 
768~//"5 3 x r[Ap(y)]2dy, xED~ (5.25) +---2v- ~ ~( ) J p(y) 
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Expanding fi~(x + r in the exact Taylor series 

p,(x + r = p~(x) + r + ~** [x, r ]) 

and estimating ~'~ by means of (5.13), one easily calculates that 

f ~q~(~) ~(x + ~)d~[ = f ~2q~(~)tS'~(x + ~**)d~ 

3 

Then, when x~D~, x+~ lies within its z-neighborhood and (5.19) gives 
j6 ~( x + ~ ) >~ d/2, so 

d 2 f ~2q,(~) ~,(x + ~) d~ >~-~ e , xeD~ 

and (5.25) becomes 

(dP~(X))2 f (dP'(Y))2 
~,(x) p,(y) q~(x- y) dy 

<~ -(u'(x))Z~(d-2e'lr e3~6~(x) f [AP(Y)]Zdy, xeD~ 
P(Y) 

Since our limitation on e in (5.17) implies e ~< d/4"~q/', this becomes 

(d/5~(x))2 f (Ap'(Y))2 
~(x) fi~(y) q~(x-- y) dy 

768"~r 5 3 [Ap(y)]Zdy, xeD~ 

Integrating over D~" and taking into account that 

f,,; G(x) dx <<. f ~.(x) dx = 1 

we arrive at 

[(JtL(x)) 2 
fo; k ~(x)  

_e2df 
12 Joff 

f (dP~(Y))2 ] p~(y) q~(x- y) dy dx 

768~V'5 53 (u'(x))Z dx +---d-U- f lAp(y)]2 
p(y) dy (5.26) 
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Now we have to estimate ~02 ( u')2 dx. Notice that since the kernel w 
is smooth and the supports of w and p are intervals, the domain D =  
supp ~-= supp Wp is also an interval with no zeros of t5 inside. Therefore 
the domain D~', where ~(x)>/d, is interval too. Let us introduce 

Io; u(x) p~(x) dx 
v(x) - u(x) - Io; p~.(x) dx 

By construction 

ID v(x) PAx) dx = 0 

so v(x) cannot but changes sign in the interval D~', and since it is 
continuous inside this domain, there exists some a e D~" such that v(a)= O. 
This enables us to write 

r x  

v(x) = jo v'(y) dy 

and applying the Cauchy-Bunjakowsky inequality, one finds that for 
xeD~ 

v2(x)<~(~a~dY)[fi~(v'(Y))2 dY]<~m(D) fD (v'(Y))2 dY 

where, as usual, m(.)  is the Lebesgue measure. Since ~D2~,dx<~ 
fi, dx = l, we immediately obtain 

Io:  v2(x)15~(x)dx <~ rn(D) ~D: (v'(Y))2 dy 

or, substituting for u and v their definitions, 

Io, (u'(x,)2 dx>~-m-~(;o, (Afi~(x')2dx- (5.27, 
p~(x) Io: p,(x) dx ] 

By (2.5), supp{ [Ap,]2/p~} ~ supp p, and obviously supp Apt___ supp p,. 
Then, since the action of the convolution operator Q~ expands the support, 
s u p p p ~ c s u p p Q ,  p , - supp f i~ .  Finally, according to {4.7), suppfi~_~ 
supp fi - D, and so 

[~p,]' 
supp ~ D ,  supp A p ~  D, supp p ~ D  (5.28) 
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Thus 

l = f j6 , dx = f o tS ~ dx + f o ~ , dx 

o r  

By definition of Dff, inside it, 0 ~< ~ ~< d, and since, according to (5.18), 
I~-Pl  <~d/2, we have 0~<t~,~< 3d (/~ is not negative). Therefore, 

fD j6~dx=l--~D p~dx>~l -~d .m(D~)~ l -~d .m(D)  ; 

so assuming that here and below d<. l/3m(D), we arrive at 

fD; ~ dx>~ �89 (5.29) 

Now let us estimate the term 5oy ZIP, dx from (5.27). Since ~ zip dx=O, we 
have 

I zi~(x)dx = f dx ~ h<(x- y)zip(y)dy= I ZIP(Y)dy=O 

which due to (5.28) .gives So~ zitS~ dx = -SD~ zitS~ dx. Estimating the latter 
integral by the Cauchy-Bunjakowsky inequality, and recalling that 

~ dx = 1, we get 

(so, 

and substituting this estimate and (5.29) in (5.27), we arrive at 

1 r (ziPs(X))2 dx~ fo~ (u'(x))2 dx >l~(-~) ( fD,~ (zij6`(x))2 d x -  2 

The first embedding from (5.28) implies that 

(ziP<(X))2 (zit~<(x))2 dx j " (A~(x))2 dx= Io (ziJ6<(x))2dx= I_ - -  dx + fo; lS~(x) 
p~(x) p~(x) ",4 ~(x) 
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Thus 

1 Io~ (u'(x) )2 dx >>'-~ ( I ( zi#'(x) dx-  3 ~o~ (zi#~(x) )z" (5.30) 

Due to the general estimate (2.4) 

I (AtS"(x))2 dx ~-I (ao zi#,(x)) 2 (zi#'(x))2 dx dx<~f 

so (5.30) can be transformed to 

I f o,~ (u'(x) )2 dx >l'~~) ( fl)ff ( zi:~(x) (zi#Ax)) ~ . 
dx-3 fo ~ ~ ax) (5.31) 

Using the identity 

(zi#~(x))2 dx ( (zi#~(x))2 
fo; G(x) -=Io;k #~(x) 

/(zi#~(x)) ~ =Io;\ 
+ I (zi#(x))~ 

#(x) 

(zi~(x))~'\ . - ~  )ax  + ~D; - -  

(A#(x))2.'] dx 
#(x) ] 

(zitS(x))2 dx f 
- -  dx - oo',; #(x) 

(zi:(x)) 2 
#(x) 

dx 

and estimating its first term by means of (5.11), we get 

(~:~(x))~ dx >i c: '  (ziP(x))~ dx + I (ziP(x))~ dx- I < - -  (zi#(x))2 dx 
#(x) 

so (5.31) becomes 

- 3 [o:  #~(x) p (x)  ] (5.32) 

Applying the general estimate (2.3) to #~ =--H~p, ~#~ =_ H~ zip, one obtains 

(zitS,(x))2 _< f (zip(y))2 h,(x- y) dy 
#,(x) "~J p(y) 
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and similarly for ~ -  Wp, At3- WAp, 

(At3(x))2 -< f (Ap(y))Z 
- -  w ( x -  y )  dy 

The kernels w and h, (for e small enough) are bounded: 0~<w~<-/r 
0 ~< h~ ~< Yr see (4.2), (4.8). Therefore, 

and (5.32) becomes 

Io (ztt%(x))2 
: p~.(x) ~o, p(y-"""~ dy 

= m(O~ ). ~ I (dp(y))"p(y......_._~dy 

(dt3(x))2t3(x) dx <~ re(Off ). ~ I (dP(Y))2p(y-~ dy 

(u'(x))  2 dx 

~>m~D) {I  (dt3(x))l "ax-[4~lcrm(D~) C2e3-]IF (dp(x))2dx} 
p/x  

Recall that D~" is the subset of D where O~<t3~<d. So for d<<.d', Dj  ~Da < 
and thus the Lebesgue measure m(Dj) is a monotone nonincreasing 
function. Moreover, it vanishes as d--} O: 

m(Dj) a-~ O 

Indeed, consider a sequence dl >~d2>>-... >~0 such that d,--*0. The 
sequence of closed embedded sets D_~D~, ~_ D~ 2 . . .  has a limit Do < = 
0,,D~,, which is the domain where 0~<t3(x)~<min, d,, that is, where 
t3(x) = 0. On the other hand, DO< ___ D, while by definition of 

D-= supp t3 -~ {xlt3(x) > O} 

each its subset where t3(x)=0 has zero Lebesgue measure. Therefore 
re(DO< ) = 0 and using the continuity of the Lebesgue measure, we conclude 
that lim . . . .  m(Dff,) = m(DO<) = 0. 

This enables to take d o so small (it should also satisfy the previous 
limitations do ~< 1 and do ~< 2-#/') that n < 1(Duo ) <~ 1/8~/', which gives 
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IO;o (u'(x)) 2 dx 

1 ~[s ,.<x,,~,~_(~:,.., +~:sc'"' ,.,x,,..x]~x, 
a n d  s u b s t i t u t i n g  t h i s  e s t i m a t e  in  (5 .26 ) ,  w e  a r r i v e  at  

[ (d~'(x))z (dP'(Y))Z dy] dx I,,;oL ::(x) ~ #5<(y) q , . ( x -  y) 

g2d~ (A/9(x))2 dx 
"< 12m(D)~ :(x-----S- 

[ e2do C2 e3'~ [Ap(y)] 2 + LI2m(D) ( ~ 768~q:5 3-1r 
+ - - - ~ o  5 e J J  p(y) +To) dy 

and (5.12) becomes 

(A:(x))2 . 
a x  

e2do f (ziP(X)) 2 <<. 
12m(D)J r 

e2do 
+ 1-t 24re(D) 

m d x  

e 3 . C2e s "~ [LJp(y)] 2 
- -  + C3 ~oo + 768~V'5 e3 

or ,  denoting 

do 768 ̀#/`5 C3, C2 
C4 -- lZm(D)' C5 - do 5 t- ~oo C6 - lZm(D-~ 

and recalling that t~--- Wp, d ~ -  Wdp: 

((W dp)(x)) 
(wp)(x) 

1 + e2C4/2 + ~3C 5 + eSc 6 f [Ap(x)]___~ 2 
dx <<. dx 

1 +e2C4 J p(x) 

1 d c J 2 -  ~c5 -  d c 6 )  f [ap(x)] 2 
= - -  - - 7 - - 7 - -  " j dx 

I + ~-C, J p(x) 

which for e small enough results in 

s" ~"'""~,x-~ (l - ~ )  s ~"'x'~ ~ . x ,  ~,,~, ~,x, 

ay 
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Since e and d are auxiliary parameters of which these integrals are 
independent, we conclude that the above inequality means the following: 

If w has a bounded support and satisfies (4.2) and supp Wp is 
bounded, then there exists x = x[p] < 1 such that 

f (( WAp)(x))2 dx <~ x 2 f [Ap(x)]2 dx (5.33) 
J (Wp)(x)  J p(x) 

for any zip for which the r.h.s, exists and SAp dx = 0. If these conditions are 
not satisfied, then x may reach 1, but never exceeds it; see (2.4). 

Now lel~ us" briefly consider the case when supp p and/or supp w 
consist of several intervals. Those composing supp p will be denoted as I;. 
Expand w and p in the sums of Pi and wj whose supports are intervals: 
p ( X )  = ~'~i p i ( X ) ,  W(X) = Z j  Wj(X); obviously P i ( X )  = Xt,(x) p(x), where 
XA(x) is the indicator of the set A, i.e., 1 for xeA and 0 otherwise. The 
existence of the integral S([dp]2/p)dx implies that d p - O  outside 
supp p = UiI i ,  thus zip admits expansion zip(x) =~iX1i(x) zip(x)- 
~.i zips(x). Due to the linearity 

~(x) =- (Wp)(x)  = ~ (wjpi ) (x)  - Y~ ~,j(x) 
i,j i,j 

zi~(x) =_ ( w zip)(x) = y, ( wj  zip,)(x) =_ ~ , ~ o ( x )  
i,j i , j  

where Wj is the convolution operator with the kernel wj. 
Let ~, zip dx-  ~ zip~ dx = 0. Since by definition both supp wj and 

supp p; are unique intervals, we can estimate Wj zip~ by means of (5.33): 

I [(WjziP~)(x)]2dx<..(f wjdx).K2[p~, wj].I [Api(x)]2dx (5.34) 
(Wjp,)(x) p,(x)  

l i t  is obvious why the factor ~ wj dx arises: (5.33) requires that the integral 
of the kernel be 1, which is not satisfied for wy. Using the normalized kernel 
wj/~ wj dx we immediately arrive at the above estimate]. 

Now, by the Cauchy-Bunjakowsky inequality, 

SO 

I [aP(x)]~ " ~ [~Pu(x)]~dx 



Markov Operator 809 

which using (5.34) becomes 

(Wp)(x)  i,j Pi(x) 

where each x[p ; ,  "9] is < 1. If the number  of intervals composing the 
supports  of  p and w is finite, then obviously x [ p ] - - m a x , j  x[Pi ,  "9] < 1, 
and recalling that  Z j  "9 = w which integral is 1, we obtain 

I r(w p)(x)Ydx   Ep3. E r P'(x)]2dx 
(Wp)(x) , p , (x)  

= ~ 2 [ p ] .  l" [AP(X)-I~ ax 
J p(x) 

so the estimate (5.33) holds in this case as well. 

6. A P P L I C A T I O N  TO THE NOISY  M A P S  

Let us return to the noisy m a p  (1.1), which is assumed to have a 
bounded a t t rac tor  ,~r This implies that  if supp p ~_ ~r then supp s 
_ d ,  etc. Now let us take a deviation of a distribution, i.e., Ap(x) with 
SApdx=O and such that  ~{[Ap]2/p}dx  exists. Denot ing P - ' ~ i P ,  
Ap = ~fAp,  we obtain from (2.6) 

[ , Jp (x) ]  ~ dx <~ ~ [ Ap(x) ]2 dx (6.1) 
~ J p(x) 

If supp p _ d ,  then Wp has a finite support ,  because @ , ,  = W.L: and so 
Wp = 5f:,,. p. Then s as a Markov  operator ,  conserves the total measure,  
thus S A p d x = S d p d x = O .  Therefore the conditions of Section 5 are 
satisfied and by (5.33) 

I ((w3p)(x))2 " l a p ( x ) ] 2  dx 

Combining  this with (6.1) and substituting for p and Ap their definitions, 
we get 

I((-~y,w dP)(X)) 2 . [AP(X)] 2 r 
"'- - -  ax <. x2 i dx 

(SPi,.,p)(x) J p(x) 
(6.2) 
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where x = x[p]  < 1 if supp p consists of a finite number  of intervals 1;, 
on each of them St, Ap dx = 0 [ then this property holds for p too and so 
(5.33) is satisfied]. If we take for p the invariant distribution P=~:,, , .P 
(obviously supp P = ~r and use the norm (1.5), this becomes 

II~zw ~pll ~< x [I~Pll (6.3) 

with x = x [ P ]  < 1 (if the above conditions are not satisfied, then x may 
reach 1, but never exceeds it). The role of the map f therefore consists in 
providing the invariant distribution P with bounded support.  

A more mathematical formulation is as follows: 
Let RL~ be the linear space endowed with the norm (1.5): JIgl[ 2=- 

S (g2/p)dx. Owing to (6.3), ~f,,, is a bounded linear operator  RL2 ~ RL2 
(while usually it is considered as LI~--~LI), IlL#:.,,g[l~<[lg[[. Denote  by 
RL~ ~ its subspace consisting of those zlp e RL 2 for which S~, zip dx for any 
I; from those composing supp P = 0 .  It is invariant under the action of 
~:. .... and if the distribution of  noise w(.) is smooth enough [i.e., satisfies 
(4.2)] and its support  is bounded, then in RL~ ~ -~:.w is contracting: 
IlL:z., zipll ~<x Ilzipll for some x <  1. 

This means that if we denote by p.(x)  the distribution in the map (1.1) 
at the nth iteration, then iterates of two different distributions Po and Po 
which integrals over any I; from these composing supp P coincide exponen- 
tially converge: 

liP, - p ,  ll ~ x" [ [Po-  Poll (6.4) 

7. ON Lz-TYPE N O R M S  FOR SPATIOTEMPORAL CHAOS 

In the previous part of this paper the norm (1.5) and related integral 
functionals were used to prove strong contract ion properties of Markov 
operators. It is marvelous that almost the same integrals and norms arise 
when we study coupled map lattices (CML)  and their random fields. This 
will be briefly discussed in this concluding section. 

Consider a C M L  with a finite coupling range R 

x i ( n  -t- 1 ) = F ( x  i_ R(n) . . . . .  Xi+ R(n)) (7.1) 

where i is a lattice point and n a discrete time. Denote  the corresponding 
probability measure (at time n) as # . (x)  and its finite-dimensional densities 

(L) as P. (~i, x ;+l  ..... xi+L). Owing to the uniformness of the model, its ran- 
dom field {x;} is (statistically) uniform and thus these distributions are 
independent of i. Let also ~') p .  (-~;Ix;+~ ..... xi+L) be the (right) conditional 
distribution: 

Pt.t')(x; ..... x i + L ) -  It.) xi+L) ~L- xi+L) (7.2) - p .  (x~lxi+, ..... P .  l~(x;+~ ..... 
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Assume that spatial correlations decay in the sense that these conditional 
distributions are a|most independent of far variables in their tails and so 
are close to the inf ini te tai l  one p.(xilxi+ l,.--): 

pl.m)(xilxi+, ..... Xi+m) ~ %  p , ( x i l X i + l  ..... xi+ . . . . .  ) (7.3) 

Now let us derive a useful asymptotic relation between magnitudes of 
infinitesimal deviations of absolute and conditional distributions. From 
(7.2) it immediately follows that 

dP~,Ll(xi ..... X~+L)= AP~,L)(XiI xi+ I ,..., Xi+ L) . --.'~L- l )~ i+ l ,..., xi+ L) 

+ tL) X i + L ) . A p ~ L - l ) ( X i + l  ..... p ,  ( x i l x , + l  ..... x i+L)  

and using the equalities 

f , tL)~x .... ) d x i =  1, ~ApC, L)(x, lx~+~ .... ) d x i = O  rn ~ i Xi+ I 

one calculates that 

[ AP~"L)(xi ..... xi+ L)]2 d x i . . . d x i  + L f 
J P~,L)(X, ..... x i+L)  

( L - - l )  2 [ [ A P ~ _  (x,..______+ 1_,..-__, x,+ L _ . .  )] 
dxi+ dxi  + J P~.L-l)(x,+l ..... x,+.) 1"'" 

(L) 2 
f( 'ztp.  (x, lx;+l ..... x,+D'] p,L)ty xi+L)  dxi  dxi+ (7.4) + ~ . . . . . .  - ,  ~-., ..... "'" L 

~,p,, (x, lx;+l ..... x,+L) } 

Notice that for any function u depending on a f in i te  number of variables 
u = u(xi,..., x i+~)  

f u f ..... x ,+ . )  ..... "x, "X,+m 

so (7.4) can be rewritten as 

f :z~P(nI-)h2d[l.ln=f (z~P(nL--l-'-~2d#n,,~ f ~ 1  d~n 
j k p~L) g ~ p~L-l, g \1~ ,  / 

which via iteration leads to 

'( A e ' : y  " (~p'.~ y 
dp, (7.5) 

(because p~O) and p~O) are the same function). 

822/74/34-23 
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The decay of correlations (7.3) implies that 

\ p,--~-y ] 

so dividing both sides of (7.5) by L and taking the limit L ~ ~ ,  we get 

1 /zipCL,\2 ~ (_~,)2 
d/t,, = J dp,, (7.6)  imzf  p,, ) 

o r  

f[ziP,, (xi ..... xi+ L)] 2 lim 1 ILj 
L ~ ~ Z ~L) P,, (xi ..... xi+t.) 

dxi...dx;.+L= I (AP"'~2dp,, (7.6') 
\ P,, / 

Now let us return to the dynamical system (7.1). Denote for the sake of 
convenience xe_{x; ..... xi+L}, x ' -={xi_R ..... Xi+L+R }. The CML (7.1) 
obviously originates the mapping x = ~L(x'), which t'2) enables us to derive 
the relation between finite-dimensional distributions: 

?~2 ~(x)= f 6(x - r ? ~  +:~(x') dx' (7.7) 

resembling the ordinary Frobenius-Perron operator (save for the fact that 
now x and x' have different dimensions). So, similarly to (2.4), we obtain 

{L+2RI , 2 
[ziPI'L+) '(x)]2 dx <~ (7.8) 

~m pcL+2m(x,) dx'  P,,+ l( x ) ,, 

Dividing both sides by L and taking the limit L ~  o0, we arrive at, 
according to (7.6), 

I k p~,+~ t~ ~- dl~,,+l ~ f (ziP"~2k'-~,, / d~t,, (7.9) 

which means that the action of any dynamics with finite coupling range 
does not increase the magnitude of the (relative) deviation of conditional 
distributions. 

Another advantage of (7.9)-type functionals is that in these "norms" 
the deviations of left and right conditional distributions coincide: 

~kPn / 
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where the left conditional distribution p~-t~(x~lxi_l ..... X~_L) has its 
"condition tail" on the left of the pivot site. 

Notice that if we take for Pn and p,, the invariant measure, then the 
integrals in (7.5)-(7.9) become conventional weighted L2 norms 

II~P~Lql~= I \ p~-~-] a~, 
(Ap:)~ 2 

[IIAp~L)[[I2- I \ p(L) ] dp (7.10) 

Altogether, though usually one considers distributions as elements of L l, it 
appears sometimes useful to work with them in L2 endowed with (1.5)-type 
norm for absolute distributions and (7.10)-type norm for conditional ones. 

REFERENCES 

1. J. P. Crutchfield and K. Kaneko, Are attractors relevant to turbulence? Phys. Lett. A 
60:2715-2718 (1988). 

2. S. V. Ershov and A. B. Potapov, On the nature of nonchaotic turbulence, Phys. Lett. A 
167:6ff64 (1992). 

3. S. V. Ershov, Is a perturbation theory for a dynamical chaos possible? Phys. Lett. A 
177:180--185 (1993). 

4. S. V. Ershov, On slow motions in chaotic systems, Phys. Lett. A 177:186-194 (1993). 
5. S. V. Ershov and A. B. Potapov, Macrodynamics: Large-scale structures in turbulent 

media, J. Stat. Phys. 69:763-779 (1992). 
6. H. Haken and G. Mayer-Kress, Influence of noise on the logistic model, J. Stat. Phys. 

26:149-173 (1981). 
7. J. L. Doob, Stochastic processes (1953); A. Lasota, T. Y. Li, and J. Yorke, Asymptotic 

periodicity of the iterates of Markov operators, Trans. Am. Math. Soc. 286:751-764 
(1984). 

8. J.-P. Eckmann and D. Ruelle, Ergodic theory of chaos and strange attractors, Rev. Mod. 
Phys. 57:617-656 (1985). 

9. F. Hofbauer and G. Keller, Ergodic properties of invariant measures for piecewise 
monotonic transformations, Math. Z. 180:119-140 (1980). 

10. G. Keller and M. Kunzle, Transfer operators for coupled map lattices, Ergodic Theory 
Dynamical Syst. 12:297-318 (1992). 

I 1. H. H. Hasegawa and W. C. Saphir, Unitarity and irreversibility in chaotic systems, Phys. 
Rev. A 46:7401-7423 (1992). 

12. K. Kaneko, Self-consistent Perron-Frobenius operator for spatiotemporal chaos, Phys. 
Lett. A 139:47-52 (1989). 


